/ - Светотехнические новости. События, факты, изобретения в светотехнике

Пестрая и светящаяся лента

Все светотехнические новости и обзоры

Пестрая и светящаяся лента Только-только начали привыкать к светодиодам, как физики опять подбросили новинку, на сей раз—тонкопленочные электролюминофоры. Тот же (в первом приближении) светодиод, но не малюсенький кристаллический, а растянутый в ленту довольно-таки приличной площади и притом гибкий, полимерный. Кому-то невдомек: светит, и ладно, на то и физики, чтоб выдумывать всякое. Ну а мы постарались заглянуть внутрь этого странного материала, чтобы понять: как и почему светит?

И тут же наткнулись на первый сюрприз: оказывается, существует не один такой материал, а два, и оба светят под действием электричества, но в силу разных физических процессов, и даже ток им требуется разный: одному — переменный, другому — постоянный. В том, который работает от переменного тока, светится неорганический порошок (обыкновенно это легированный медью или марганцем сернистый цинк), распределенный в пленке диэлектрика с напыленными токопроводящими слоями, к которым приложено переменное напряжение порядка 100 B звуковой частоты (от 400 до тысячи с лишним герц). Не забыли еще школу? Узнаете? Да это же не что иное, как светящийся конденсатор! Эффект свечения легированного медью сернистого цинка, помещенного в диэлектрик между обкладок конденсатора, открыл Дестрио в 1936 году. Больше 60 лет понадобилось, чтобы кто-то (кто именно, история умалчивает) додумался сказать по этому поводу: «Да будет свет!» — и изобрел электролюминесцентную пленку.

Материал, светящийся при постоянном токе,—истинно тонкопленочный светодиод. Его создание стало возможным с открытием токопроводящих полимеров и обошлось ни много ни мало в одну общую Нобелевскую премию, присужденную в 2000 году «на троих» тезкам-американцам Алану Хигеру и Алану Мак-Диармиду вкупе с японцем Хидеки Сиракавой. Кстати, Сиракава сделал свое открытие случайно. В начале 70-х нобелевский лауреат, а тогда научный сотрудник Токийского университета, изучая синтез свободных пленок полиацетилена, в одном из опытов использовал ошибочно большую концентрацию катализатора. Результатом этой ошибки было образование красивых серебристых пленок полиацетилена с характерным металлическим блеском. А главное—пленки проводили электрический ток!

Вскоре американцы и японец стали работать вместе. В 1977 году ими было опубликовано первое краткое сообщение. Позже они нашли оптимальные условия синтеза, благодаря чему удельная проводимость полимера повысилась до уровня алюминия и даже меди.

В последние 10 лет появилась вторая генерация токопроводящих полупроводниковых полимерных материалов. На их основе конструируются органические транзисторы, лазеры, солнечные батареи, а также интересующие нас тонкопленочные светодиоды. Надо отметить, что перспективы их применения связаны не только со светотехникой, но также и с производством дисплеев нового поколения - так называемых OLED. Ожидается, что через пару лет они составят серьезную конкуренцию TFT-матрицам.

Итак, светящийся конденсатор и тонкопленочный светодиод. В первом люминесценция возбуждается сильным электрическим полем звуковой частоты, близким к пробивному, и называется предпробивной. Во втором электрическое поле намного меньше, ток постоянный, а люминесценция называется инжекционной. Рассмотрим тот и другой с точки зрения протекающих в них физических процессов.

Хорошим люминофором, как было сказано выше, является сульфид цинка, сильно легированный медью. На поверхности его кристалликов, распределенных в диэлектрике, образуются островки фазы CuxS с проводимостью р-типа. Эта фаза образует с полупроводником n-типа ZnSCu гетеропереход, который при обратном смещении является областью концентрации электрического поля.

Кстати, за исследование гетеропереходов, то есть р-n-переходов на границе двух полупроводниковых кристаллов с разным типом проводимости, наш соотечественник Жорес Алферов тоже отхватил «Нобеля».

При наложении напряжения прикатодный гетеропереход смещается в обратном направлении (запирается). В нем сосредоточивается сильное поле. Электроны из зоны р-типа CuxS туннелируют в зону n-типа ZnS-Cu и там разгоняются сильным электрическим полем до энергий, необходимых для ударной ионизации кристаллической решетки. Возникающие при этом дырки захватываются центрами свечения, а освобожденные электроны лавиной движутся к противоположному концу кристаллика, где происходит их рекомбинация с центрами свечения, ионизированными в предшествующий полупериод переменного напряжения, когда там было сильное поле. Рекомбинация сопровождается испусканием светового кванта. Таким образом, у одного из двух гетеропереходов в каждом кристаллике происходит возбуждение центров люминесценции, одновременно у противоположного гетероперехода происходит рекомбинационное излучение, реализующее энергию, накопленную в предыдущий полупериод напряжения.

Видите, как все просто! Особенно если вы были отличником в школе и у вас хорошая память. Тогда вы, безусловно, помните, что дырка в полупроводнике — это не технологическое отверстие, вроде дырки от бублика, а квазичастица — носитель положительного заряда, образующаяся в кристаллической решетке при захвате электрона ядром атома примеси.

Светящиеся люминесцентные источники — ленты и провода — продукция компании Гибкий Свет, используются в сфере светового дизайна уже более десяти лет. Ряд международных патентов на изобретения в области электролюминесцентных источников света принадлежит нашему соотечественнику Рубену Акоповичу Поляну.

Основанные на этом принципе тонкопленочные электролюминесцентные излучатели позволяют получать яркость до 200 кд/м2. Их срок службы достигает 20000 часов. Площадь может достигать нескольких квадратных метров. Цвет их свечения определяется составом активного слоя. ZnS:Cu люминесцирует голубым и зеленым, ZnS:Mn — оранжево-желтым. Перспективными для практического применения оказались активные слои из сульфидов щелочно-земельных элементов, легированных редкоземельными элементами. На их основе созданы излучатели сине-зеленого свечения (SrS:Ce), зеленого (CaS:Ce), красного (CaS:Eu, CaS:Er) и белого (CaS:Pr, K, SrS:Ho, Nd, SrS:Sm, Ce).

В излучающем свет диоде, в том числе и тонкопленочном, работает не запертый, а, наоборот, смещенный в прямом направлении р-n-переход. При снижении энергетического барьера происходит инжекция электронов из n-области в р-область, и при рекомбинации электронов и дырок излучаются фотоны. Сложность состоит в том, чтобы разогнать электроны до нужных скоростей, что не так-то просто сделать в кристалле, где электроны рассеиваются на колеблющихся узлах решетки. О том, как ученые преодолели все трудности, связанные с кристаллическим светодиодом, автор обещает рассказать в одном из ближайших номеров журнала. А сейчас сосредоточимся на том, как устроен тонкопленочный светодиод на полимерной основе. Для этого нам не помешает узнать, что такое сопряженный полимер.

За счет чего становится проводником тока органический полимер? Его молекула состоит из чередующихся сопряженных одинарных и двойных связей. При этом двойные связи слабо локализованы и образуют общую электронную систему сопряжения, которая охватывает всю молекулу. Чтобы полимер-полупроводник стал проводником тока, нужно создать носители заряда вдоль полимерной цепи. Для этого нужно один или несколько электронов удалить из общей системы сопряжения или, наоборот, добавить к ней. Достигнуть этого можно окислительной модификацией полимера йодом, приводящей к изъятию электрона из системы сопряжения, или восстановительной модификацией натрием, который служит донором электрона. В результате в полимере возникают положительно или отрицательно заряженные квазичастицы—поляроны. При высокой степени модификации поляроны объединяются в пары с образованием заряженных солитонов. Эти удивительно подвижные квазичастицы под воздействием электрического поля обеспечивают высокую проводимость полимеров с системой сопряженных связей.

Пестрая и светящаяся лента

Рис. 1. Схема светоизлучающего диода, в котором используется электролюминесценция пленки сопряженного полимера

Оказывается, тонкие пленки сопряженных полимеров могут генерировать свет, если они находятся между двумя электродами, один из которых служит источником электронов, а другой—дырок. Когда через такое устройство (рис. 1) пропускается постоянный ток, электроны и дырки рекомбинируют в объеме пленки и в полимерных цепочках возникают возбужденные состояния, способные люминесцировать. Цвет люминесценции зависит от ширины запрещенной зоны полимера и может легко регулироваться посредством химической модификации. В этом—важное преимущество органических полупроводников перед неорганическими.

Тонкопленочные электролюминофоры не сделают революции в светотехнике, но сферы их возможного применения многообразны, а связанный с ними бизнес весьма перспективен. В каких же приложениях прежде всего следует ожидать пришествия светящихся пленок?

На Западе это то, что связано с безопасностью: светящаяся дорожная разметка, сигнальные огни кораблей, самолетов и поездов, подсветка ступенек (в Европе, например, законодательно требуется их световая маркировка), светящиеся спасательные костюмы. Возможность использования в столь экстремальных условиях определяется высокой степенью влагонепроницаемости и ударостойкости светящейся ленты, ее длительным сроком эксплуатации без обслуживания и низким энергопотреблением. Среди других приложений: светящиеся панели в автомобиле, декоративная подсветка помещений, световая реклама, оконтуривание зданий, всевозможные шоу, светящаяся бижутерия ets. В России все наоборот: первыми интерес к новой продукции проявили владельцы и оформители ресторанов, баров, кинотеатров.

Еще рано говорить о возможности применения тонкопленочных люминофоров для освещения, о создании из них светящихся стен и потолков. Пока их главная цель — неярко светить в полумраке.

Ниша, занимаемая на рынке тонкопленочными электролюминофорами, в чем-то близка к оптоволокну с боковым свечением. Аналогичная яркость, отсутствие выделения тепла, гибкость, стойкость к влаге—и сходная цена. Причем, если сравнивать эффект, достигаемый на определенной площади, то использование пленок обходится дешевле. Другое преимущество тонкопленочных электролюминофоров, важное для некоторых приложений,—отпадает необходимость во внешнем источнике света, таком, как светодиод. С другой стороны, в оптоволокне нет токонесущих элементов, следовательно, его безопасность выше. Пока что у пленки нет эффекта мерцания.

По словам Эдуарда Хамазы, менеджера компании Aura City, которая едва ли не первой в России предложила отечественному покупателю тонкопленочные электролюминофоры Eline известной фирмы Elinca, выбор покупателя определяется... соотношением силы привычки и любви к новизне. Ежели дизайнер, к примеру, давно использует в своей работе светодиоды и оптоволокно, то, чтобы перейти на незнакомый материал—светящуюся пленку,—ему нужно преодолеть энергетический барьер, как дырке в этой самой пленке. Поэтому компания применяет простой «маркетинговый ход»: рассказывает своим давнишним, проверенным клиентам о новом материале—без нажима, предоставляя полное право выбора. И вот уже откликнулись краснодарцы: заказали Eline для декоративного оформления ресторана и подсветки ступенек в кинотеатре.

Что же представляет собой Eline? Это гибкая прозрачная лента шириной 18 и толщиной 7 мм в полимерной влагонепроницаемой оболочке. Схематично ее разрез показан на рисунке.

Пестрая и светящаяся лента

Выпускается шесть типов ленты: с белым, голубым, красным, зеленым, желтым и оранжевым свечением. Для подключения к сетевому напряжению (220 В) используется драйвер. Его назначение — формирование выходного напряжения звуковой частоты (850±70 Гц). Отсюда, кстати, видно, что предлагаемый продукт есть не что иное, как рассмотренный выше «светящийся конденсатор». Выпускается три типа драйверов: к первому может быть подключена без потерь лента длиной до 20 метров, ко второму — до 100 метров и, наконец, к третьему, демонстрационному, — только короткий кусочек сантиметров в 15, зато питается он от батарейки.

Энергопотребление составляет 360 ватт на 100 метров ленты. Ток при стометровой длине ленты 1,7 А с нагрузкой и 1,5 А без нагрузки, при двадцатиметровой ленте соответственно 500 и 200 мA.

Предлагается также набор аксессуаров — концевиков и разветвителей, при помощи которых можно создавать светящиеся разноцветные конструкции в виде деревьев с прямыми углами.

Как видим, у данного вида продукции есть одно ограничение: она стационарна, то есть не предназначена для таких приложений, как автомобиль, одежда и бижутерия. Компактные светящиеся пленки, питающиеся от миниатюрных батареек или аккумуляторов, хорошо известные на Западе, несомненно, ждут своего часа—для России.

Алексей Рябов Журнал "Цоколь"

Другие новости по теме:

  • Будущее светотехники - электролюминесцентные панели из светящихся полимеров
  • Использование анодированного алюминия в современных светильниках
  • Часто задаваемые вопросы о светодиодах и светодиодных светильниках
  • В Южной Корее созданы уличные фонари, работающие на севших батарейках
  • Тенденции рынка. Из доклада представителя компании «Osram»
  • Анализ рынка растровых светильников
  • Создан микроволновый источник света , способный совершить настоящую революц ...
  • Новые ПРА от компании Philips

  •  (голосов: 2)


    Поиск по сайту

    Объявления

      Новости светотехники

      Рассылка

      Реклама